首页> 外文OA文献 >The resting microstate networks (RMN): cortical distributions, dynamics, and frequency specific information flow
【2h】

The resting microstate networks (RMN): cortical distributions, dynamics, and frequency specific information flow

机译:静止的微状态网络(RMN):皮质分布,动力学和特定于频率的信息流

摘要

A brain microstate is characterized by a unique, fixed spatial distribution of electrically active neurons with time varying amplitude. It is hypothesized that a microstate implements a functional/physiological state of the brain during which specific neural computations are performed. Based on this hypothesis, brain electrical activity is modeled as a time sequence of non-overlapping microstates with variable, finite durations (Lehmann and Skrandies 1980, 1984; Lehmann et al 1987). In this study, EEG recordings from 109 participants during eyes closed resting condition are modeled with four microstates. In a first part, a new confirmatory statistics method is introduced for the determination of the cortical distributions of electric neuronal activity that generate each microstate. All microstates have common posterior cingulate generators, while three microstates additionally include activity in the left occipital/parietal, right occipital/parietal, and anterior cingulate cortices. This appears to be a fragmented version of the metabolically (PET/fMRI) computed default mode network (DMN), supporting the notion that these four regions activate sequentially at high time resolution, and that slow metabolic imaging corresponds to a low-pass filtered version. In the second part of this study, the microstate amplitude time series are used as the basis for estimating the strength, directionality, and spectral characteristics (i.e., which oscillations are preferentially transmitted) of the connections that are mediated by the microstate transitions. The results show that the posterior cingulate is an important hub, sending alpha and beta oscillatory information to all other microstate generator regions. Interestingly, beyond alpha, beta oscillations are essential in the maintenance of the brain during resting state.
机译:脑微状态的特征是电活动神经元具有随时间变化幅度的独特的固定空间分布。假设微状态实现了大脑的功能/生理状态,在此期间执行特定的神经计算。基于此假设,脑电活动被建模为具有可变的有限持续时间的非重叠微状态的时间序列(Lehmann和Skrandies 1980,1984; Lehmann等人1987)。在这项研究中,使用四种微状态对109名闭眼休息状态下的参与者的EEG记录进行了建模。在第一部分中,介绍了一种新的确认统计方法,用于确定产生每个微状态的电神经元活动的皮层分布。所有的微状态都有共同的后扣带产生器,而三个微状态还包括左枕/顶叶,右枕/顶和前扣带皮层的活动。这似乎是新陈代谢(PET / fMRI)计算的默认模式网络(DMN)的碎片版本,支持以下概念:这四个区域在高时间分辨率下依次激活,并且缓慢的新陈代谢成像对应于低通滤波版本。在本研究的第二部分中,微状态振幅时间序列被用作估算由微状态跃迁介导的连接的强度,方向性和光谱特性(即哪些振动优先传播的基础)的基础。结果表明,后扣带回是重要的枢纽,向所有其他微状态生成器区域发送alpha和beta振荡信息。有趣的是,除了α外,β振荡对于静止状态下大脑的维持至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号